3.36 \(\int \frac{\text{csch}(c+d x)}{a+b \sinh ^2(c+d x)} \, dx\)

Optimal. Leaf size=60 \[ -\frac{\sqrt{b} \tan ^{-1}\left (\frac{\sqrt{b} \cosh (c+d x)}{\sqrt{a-b}}\right )}{a d \sqrt{a-b}}-\frac{\tanh ^{-1}(\cosh (c+d x))}{a d} \]

[Out]

-((Sqrt[b]*ArcTan[(Sqrt[b]*Cosh[c + d*x])/Sqrt[a - b]])/(a*Sqrt[a - b]*d)) - ArcTanh[Cosh[c + d*x]]/(a*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0742426, antiderivative size = 60, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.19, Rules used = {3186, 391, 206, 205} \[ -\frac{\sqrt{b} \tan ^{-1}\left (\frac{\sqrt{b} \cosh (c+d x)}{\sqrt{a-b}}\right )}{a d \sqrt{a-b}}-\frac{\tanh ^{-1}(\cosh (c+d x))}{a d} \]

Antiderivative was successfully verified.

[In]

Int[Csch[c + d*x]/(a + b*Sinh[c + d*x]^2),x]

[Out]

-((Sqrt[b]*ArcTan[(Sqrt[b]*Cosh[c + d*x])/Sqrt[a - b]])/(a*Sqrt[a - b]*d)) - ArcTanh[Cosh[c + d*x]]/(a*d)

Rule 3186

Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = Free
Factors[Cos[e + f*x], x]}, -Dist[ff/f, Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b - b*ff^2*x^2)^p, x], x, Cos
[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]

Rule 391

Int[1/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> Dist[b/(b*c - a*d), Int[1/(a + b*x^n),
 x], x] - Dist[d/(b*c - a*d), Int[1/(c + d*x^n), x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\text{csch}(c+d x)}{a+b \sinh ^2(c+d x)} \, dx &=-\frac{\operatorname{Subst}\left (\int \frac{1}{\left (1-x^2\right ) \left (a-b+b x^2\right )} \, dx,x,\cosh (c+d x)\right )}{d}\\ &=-\frac{\operatorname{Subst}\left (\int \frac{1}{1-x^2} \, dx,x,\cosh (c+d x)\right )}{a d}-\frac{b \operatorname{Subst}\left (\int \frac{1}{a-b+b x^2} \, dx,x,\cosh (c+d x)\right )}{a d}\\ &=-\frac{\sqrt{b} \tan ^{-1}\left (\frac{\sqrt{b} \cosh (c+d x)}{\sqrt{a-b}}\right )}{a \sqrt{a-b} d}-\frac{\tanh ^{-1}(\cosh (c+d x))}{a d}\\ \end{align*}

Mathematica [C]  time = 0.209569, size = 124, normalized size = 2.07 \[ \frac{\sqrt{a-b} \log \left (\tanh \left (\frac{1}{2} (c+d x)\right )\right )-\sqrt{b} \tan ^{-1}\left (\frac{\sqrt{b}-i \sqrt{a} \tanh \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a-b}}\right )-\sqrt{b} \tan ^{-1}\left (\frac{\sqrt{b}+i \sqrt{a} \tanh \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a-b}}\right )}{a d \sqrt{a-b}} \]

Antiderivative was successfully verified.

[In]

Integrate[Csch[c + d*x]/(a + b*Sinh[c + d*x]^2),x]

[Out]

(-(Sqrt[b]*ArcTan[(Sqrt[b] - I*Sqrt[a]*Tanh[(c + d*x)/2])/Sqrt[a - b]]) - Sqrt[b]*ArcTan[(Sqrt[b] + I*Sqrt[a]*
Tanh[(c + d*x)/2])/Sqrt[a - b]] + Sqrt[a - b]*Log[Tanh[(c + d*x)/2]])/(a*Sqrt[a - b]*d)

________________________________________________________________________________________

Maple [A]  time = 0.049, size = 74, normalized size = 1.2 \begin{align*}{\frac{1}{da}\ln \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) }-{\frac{b}{da}\arctan \left ({\frac{1}{4} \left ( 2\, \left ( \tanh \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a-2\,a+4\,b \right ){\frac{1}{\sqrt{ab-{b}^{2}}}}} \right ){\frac{1}{\sqrt{ab-{b}^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csch(d*x+c)/(a+b*sinh(d*x+c)^2),x)

[Out]

1/d/a*ln(tanh(1/2*d*x+1/2*c))-1/d/a*b/(a*b-b^2)^(1/2)*arctan(1/4*(2*tanh(1/2*d*x+1/2*c)^2*a-2*a+4*b)/(a*b-b^2)
^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\frac{\log \left ({\left (e^{\left (d x + c\right )} + 1\right )} e^{\left (-c\right )}\right )}{a d} + \frac{\log \left ({\left (e^{\left (d x + c\right )} - 1\right )} e^{\left (-c\right )}\right )}{a d} - 2 \, \int \frac{b e^{\left (3 \, d x + 3 \, c\right )} - b e^{\left (d x + c\right )}}{a b e^{\left (4 \, d x + 4 \, c\right )} + a b + 2 \,{\left (2 \, a^{2} e^{\left (2 \, c\right )} - a b e^{\left (2 \, c\right )}\right )} e^{\left (2 \, d x\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)/(a+b*sinh(d*x+c)^2),x, algorithm="maxima")

[Out]

-log((e^(d*x + c) + 1)*e^(-c))/(a*d) + log((e^(d*x + c) - 1)*e^(-c))/(a*d) - 2*integrate((b*e^(3*d*x + 3*c) -
b*e^(d*x + c))/(a*b*e^(4*d*x + 4*c) + a*b + 2*(2*a^2*e^(2*c) - a*b*e^(2*c))*e^(2*d*x)), x)

________________________________________________________________________________________

Fricas [B]  time = 2.01415, size = 1544, normalized size = 25.73 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)/(a+b*sinh(d*x+c)^2),x, algorithm="fricas")

[Out]

[1/2*(sqrt(-b/(a - b))*log((b*cosh(d*x + c)^4 + 4*b*cosh(d*x + c)*sinh(d*x + c)^3 + b*sinh(d*x + c)^4 - 2*(2*a
 - 3*b)*cosh(d*x + c)^2 + 2*(3*b*cosh(d*x + c)^2 - 2*a + 3*b)*sinh(d*x + c)^2 + 4*(b*cosh(d*x + c)^3 - (2*a -
3*b)*cosh(d*x + c))*sinh(d*x + c) - 4*((a - b)*cosh(d*x + c)^3 + 3*(a - b)*cosh(d*x + c)*sinh(d*x + c)^2 + (a
- b)*sinh(d*x + c)^3 + (a - b)*cosh(d*x + c) + (3*(a - b)*cosh(d*x + c)^2 + a - b)*sinh(d*x + c))*sqrt(-b/(a -
 b)) + b)/(b*cosh(d*x + c)^4 + 4*b*cosh(d*x + c)*sinh(d*x + c)^3 + b*sinh(d*x + c)^4 + 2*(2*a - b)*cosh(d*x +
c)^2 + 2*(3*b*cosh(d*x + c)^2 + 2*a - b)*sinh(d*x + c)^2 + 4*(b*cosh(d*x + c)^3 + (2*a - b)*cosh(d*x + c))*sin
h(d*x + c) + b)) - 2*log(cosh(d*x + c) + sinh(d*x + c) + 1) + 2*log(cosh(d*x + c) + sinh(d*x + c) - 1))/(a*d),
 -(sqrt(b/(a - b))*arctan(1/2*sqrt(b/(a - b))*(cosh(d*x + c) + sinh(d*x + c))) - sqrt(b/(a - b))*arctan(1/2*(b
*cosh(d*x + c)^3 + 3*b*cosh(d*x + c)*sinh(d*x + c)^2 + b*sinh(d*x + c)^3 + (4*a - 3*b)*cosh(d*x + c) + (3*b*co
sh(d*x + c)^2 + 4*a - 3*b)*sinh(d*x + c))*sqrt(b/(a - b))/b) + log(cosh(d*x + c) + sinh(d*x + c) + 1) - log(co
sh(d*x + c) + sinh(d*x + c) - 1))/(a*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\operatorname{csch}{\left (c + d x \right )}}{a + b \sinh ^{2}{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)/(a+b*sinh(d*x+c)**2),x)

[Out]

Integral(csch(c + d*x)/(a + b*sinh(c + d*x)**2), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)/(a+b*sinh(d*x+c)^2),x, algorithm="giac")

[Out]

Exception raised: TypeError